Bi-goal evolution for many-objective optimization problems
نویسندگان
چکیده
This paper presents a meta-objective optimization approach, called Bi-Goal Evolution (BiGE), to deal with multi-objective optimization problems with many objectives. In multi-objective optimization, it is generally observed that 1) the conflict between proximity and diversity requirements is aggravated with the increase of the number of objectives and 2) the Pareto dominance loses its effectiveness for a high-dimensional space but works well on a low-dimensional space. Inspired by these two observations, BiGE converts a given multi-objective optimization problem into a bi-goal (objective) optimization problem regarding proximity and diversity, and then handles it using the Pareto dominance relation in this bi-goal domain. Implemented with estimation methods of individuals’ performance and the classic Pareto nondominated sorting procedure, BiGE divides individuals into different nondominated layers and attempts to put well-converged and well-distributed individuals into the first few layers. From a series of extensive experiments on four groups of well-defined continuous and combinatorial optimization problems with 5, 10 and 15 objectives, BiGE has been found to be very competitive against five state-of-the-art algorithms in balancing proximity and diversity. The proposed approach is the first step towards a new way of addressing many-objective problems as well as indicating several important issues for future development of this type of algorithms.
منابع مشابه
The Quasi-Normal Direction (QND) Method: An Efficient Method for Finding the Pareto Frontier in Multi-Objective Optimization Problems
In managerial and economic applications, there appear problems in which the goal is to simultaneously optimize several criteria functions (CFs). However, since the CFs are in conflict with each other in such cases, there is not a feasible point available at which all CFs could be optimized simultaneously. Thus, in such cases, a set of points, referred to as 'non-dominate' points (NDPs), will be...
متن کاملA Customized Bi-Objective Location-Routing Problem for Locating Post Offices and Delivery of Post Parcels
One of the most important problems for distribution companies is to find the best locations for depots and to find proper routes for transportation vehicles and to optimize supply network. This study intends to develop a model for the problem of location-routing in post offices. So, a new Bi-Objective Location-Routing Problem for Locating Town Post Office and Routing Parcels is defined. This pr...
متن کاملA Bi-objective Model for Cellular Manufacturing System Considering Worker Skills, Part Priorities,and Equipment Levels
Here, a new mathematical model for cellular manufacturing systems considering three important features of part priority, levels of machine’s technology, and the operator’s skill is developed. Simultaneous consideration of these features provides a more realistic analysis of the problems in cellular manufacturing systems. A model with multiple design features including cell formation, human reso...
متن کاملOptimum Pareto design of vehicle vibration model excited by non-stationary random road using multi-objective differential evolution algorithm with dynamically adaptable mutation factor
In this paper, a new version of multi-objective differential evolution with dynamically adaptable mutation factor is used for Pareto optimization of a 5-degree of freedom vehicle vibration model excited by non-stationary random road profile. In this way, non-dominated sorting algorithm and crowding distance criterion have been combined to differential evolution with fuzzified mutation in order ...
متن کاملA New Algorithm for Constructing the Pareto Front of Bi-objective Optimization Problems
Here, scalarization techniques for multi-objective optimization problems are addressed. A new scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated. It is shown that we can restrict the parameters of the scalarized problem. The computed efficient points provide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artif. Intell.
دوره 228 شماره
صفحات -
تاریخ انتشار 2015